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1. Context: Motivation and Goals
About 2 years ago we decided to build a computer-based programming tutor to help students

learn to program in Pascal; we wanted the system to identify the nen-.pntactic bugs in a

student's program and tutor the student with respect to the misconceptions that might have

given rise to the bugs. The emphasis was on the system understanding what the student did and

did not understand; we felt that simply telling the student that there was a bug in line 14 was

not sufficient -- since oftentimes the bug in line 14 was really caused by a whole series of

conceptual errors that could not be localized to a specific line in the program. However, in order

to design the system we needed to know what bugs students did make in their programs and

what misconceptions they typically labored under. On the basis of bug types found in a number
of pencil-and- paper studies with student programmers (novices, intermediates, and advanced)

[9, 10), we built and classroom tested a first version of such a programming tutor [11]. In the

process of testing that system we instrumented the operating system on a CYBER 175 to

automatically collect a copy of each syntactically correct program the student programmers

attempted to execute while sitting at the terminal; we call this form of data "on-line protocols".

We collected such protocols on 204 students for an entire semester (7 programming assignments).

We have systematically analyzed only a small portion of these data: the basis for this paper is

the hand analysis of the first syntactically correct program that students generated for their first

looping assignment,' i.e., 204 programs.

The story we tell in this paper deals with our experiences in analyzing these 204 on-line

protocols. In particular, we will describe the observations we made in trying to build a bug

classification scheme; the actual details of what bugs we found, their frequency, etc. can be found

in [51. The key observation is the following: while one might think that building a classification

scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will

argue that:

Bugs cannot be uniquely described on the basi. of features of the buggy program alone; one

must also take the programmera* intentions and know.ledge st ate into accunt.

2. A Slmplifed Example
Consider the problem statement in Figure 1, which is a simplified version of the first looping4 problem that the students in our study had to solve in Pascal. From a novice's perspective the

difficult part of this problem is making sure that the negative inputs are filtered out before they
are processed. There are two common approaches to solving this type of problem in an Algol-like

language such as Pascal. In Figure 2 we depict a solution in which a negative input causes

1This problem is given in Figure 8, which will be discuused in action 4.
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execution of one branch of a conditional, while a non-negative input caues execution of the

major computation of the loop. We call this type of structure a Sksp-uad P1611:2 a

conditional statement is used to guard the main computation from illegal valuse. Notice that one

pass through the loop will be made for each input value. The second approach is given in Figure

3; here an embedded loop filters out the illegal values. Notice that one pms through the outside

loop will be made for each - and only each - legal value. We call the nestedl loop structure an

Embedded Flter Loop Plan.

Write a program that reads in integers, that represent the daily rainfall in the New Haven area.
and computes the average dafly rainfall for the input values. If the input is a negative number, do
not count this value in the average, and prompt tb. use to input another, legal value. Stop
reading when 9990 is input; this is a sentinel value and should mot be used is the average
calculation.

Figure 1: Simplified Looping Problem

READ(RAINFALL)
WHILE RAINFALL 0 99M 00

BEGIN
IF RAINFALL < 0

THEN
WRITELN('SA INPUT. TRY AGAIN')

ELSE
BEGIN

TOTAL :s TOTAL + RAINFALL;
DAYS :s DAYS + 1;

REAO(RAINFALL);

END;

Figure 3: Using a Skip-Gu~ard Plan

Now consider the buggy program in Figure 4. The problem with this program is that if the

user first types a negative input, and then types the sentinel value 99M9, this value will4 - incorrectly - be processed as a legitimate value. A number of questions come to mind:
1. How should we classify this bug'

2. What piece of code is to blame'

3. What mental error on the student's part might have caused this bug'

2%* [11. 3, 9lfor a more complete discussion of programming plan&.
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READ(RAINFALL)
WHILE RAINFALL 0, 0" DO

BEGIN
WHILE RAINFALL < 0 DO

BEGIN
WRITELN('BAD INPUT. TRY AGAIN');
READ(RAINFALL)

END;
IF RAINFALL 4) 99999 THEN

BEGIN
TOTAL TOTAL + RAINFALL;
DAYS DAYS + 1;
READ(RAINFALL)

END;
END;

Figure 3: Using an Embedded FMte Loop Plan

4. Vhat piece of code should we change to make the program correct?

In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? That is, did the student intend
to implement the skip-guard plan or did he try to implement the embdded Jfter loop
plan?

Answers to the first 4 questions will be different depending on how we answer this last question.

READ(RAINFALL)

WHILE RAINFALL 0, 99999 DO
BEGIN

WHILE RAINFALL < 0 DO
BEGIN

VRITELN('BAD INPUT. TRY AGAIN');
READ(RAINFALL)

END;
TOTAL : TOTAL * RAINFALL;
DAYS : DAYS * 1;
READ(RAINFALL)

'END;

Figure 4: Sample Bugg Program

We will continue this example by presenting first an argument that supports the choice of the

skip-guard plan, and then an argument that supports the choice of the embedded filter

loop plan; we will then describe a basis for making a choice between the two competing
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positions. Consider, then, Figure 5 in which we depict the buggy program again, plus a

generalized, template version of the asp-gvord plan. We can describe the buggy program in

terms of a difference description between the it and the generalized plan. As shown in Figure 5.
there are 3 differences:

1. need an IF instead of a WHILE inside the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice

programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with

simply an IF, and sometimes they use just the test part of the WHILE statement3 12. 61.
Similarly, the second difference is also plausible for novices; again, we have found that novices

often add bits of spurious code, oftentimes attempting to mimic the redundancy they often use in

formulating plans and actions in the real world. Finally, if we assume that the programmer

really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip

around the computation; novices notoriously have trouble with the ELSE parts of conditionals.

Thus, the buggy code in Figure 5 is not that different from the skip-guard plsa; w.hen

considering differences from only this plan it is entirely conceivable that the novice

programmer was trying to implement this plan in his code.

Now consider Figure 6 in which we again depict the buggy program. This time, however, we

show differences between it and a generalized, template version of an embedded filter loop

plan. Notice that the code matches the plan well; the only bug is a missing guard before the

code that processes the input: the running total update and the counter update must be

protected from including a sentinel value in the computation.

The analysis in Figures 5 and 5 would lead to different answers to the first 4 questions above.

For example, if we believe that the analysis in Figure 5 is correct, we might say the following to

the student: 4

It seems that you are haying some trouble with conditional statements. For example, did you
realize that there exists a statement called IF that allows you to test ..

To correct your program, you might wast to add an ELSE clause...

2While this may moem strange to us u expert programmer. if we take a moment to reflect, we can uee that using
WKILE rot a conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their meanings
in English.

4We do not want to argue about the beet pedagogial strasw for interacting with the student; that in itself me a
very difficult question. The particular response shown in simply meant to illustrate one type of response to this
situation.
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READ(RAINFALL)
WHILE RAINFALL ( 99"9 DO Skip-Guerd Ran

BEGIN
WHILE RAINFALL < 0 DO IF x < fin

BEGIN THEN
WRITELN(*BAD INPUT. TRY AGAIN'); BEGIN
READ(RAINFALL) print error message

END; END
TOTAL S TOTAL * RAINFALL; ELSE
DAYS DAYS * 1; BEGIN
READ(RAINFALL) process input

END; END

BUG DESCRIPTION:

1. need an IF instead of a WHILE
2. have an extra READ in inner loop
3. missing ELSE; processing of Input

will never be skipped

Figure 6: Bug Description Assuming Skip-Guard Plan

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)

missing ELSE. On the other hand, if we believe that the analysis in Figure 6 is correct, then we

might say something like the following to the student:

You should notice if the sentinel value follows the input of a negative value that your program
will compute an incorrect average.

The bug type then might be a missing guard (conditional) plan.

By this time the reader's intuition is surely saying that the correct analysis of the buggy

program in Figure 4 is that the programmer intended to implement an embedded filter loop

plan. The bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
plan) provide quantitative eupport for this decision. However, we feel that the key in the

decision process -- and the basis for our intuition - is our underetanding of the student's

program provided by the plan analysis in Figure 5: thus, the bug categorization and bug count

follow from our understanding of the program - and not the other way around. We purposely

choose an example over which there would be little controversy. However, the point was (1) to

show how much reasoning we often do about programs implicitly, and (2) to show how different

bug categorization and bug counts could be u a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturb the buggy code a bit further and
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READ(RAINFALL) Embedded alter Loop Plan
WHILE RAINFALL <> 99999 DO

BEGIN WHIZE < in DO
WHILE RAINFALL < 0 DO BEGIN

BEGIN print error message
WRITELN('BAD INPUT, TRY AGAIN'); READ x
READ(RAINFALL) END

END; sentinel guard plan
TOTAL : TOTAL * RAINFALL; process input
DAYS DAYS * 1;
READ (RAINFALL)

END;

BUG DESCRIPTION:

1. missing conditional (guard) on
processing the input

Figure 6S Bug Description Assuming Embedded Ailter Loop Plan

see how murky these type of decisions can - and do - become. In Figure 7 we show three

buggy program fragments; let us compare the bug categorization and bug counts using the two

-rnative plans for each of the programs.

e Figure 7 a

Using the embedded filter loop plan we get the following bug differences:

1. the WHILE and IF keywords have been interchanged

2. there is a missing read for a new value

3. there is a missing guard on the subsequent input processing

s, Using the ekip-guard plan we get the following bug differences:

S1. missing ELSE on the internal IF

0 Figure 7b

o Using the embedded filter loop plas we get the following bug differences:

1. the WHILE ad IF keywords have been interchanged

2. there is a mising guard on the subsequent input prcesig

P Using the skip-guard plan we get the following bug differences:

1. spurious READ

2. missing ELSE on the internal IF
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*Figure 7c

Using the embedded filter loop plan we get the following bug differences:

1. missing read for a new value

2. there is a missing guard on the subsequent input processing

Using the ship-guard planswe get the following bug differences:

1. the WHILE and IF key-words have been interchanged

2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a

skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the

skip-guard plan) support the intuition that it is more plausible that the programmer simply

left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and c

are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are

reasonably similar. In order to make a reasoned decision we need to bring other evidence from

the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly

implement the outer loop; this is some evidence that he understancdi. how and when to use this
construct. Thus, we might be confident that the programmer really meant IF in the program in

Figure 7b. On the other hand, the inclusion of the spurious READ is unsettling. However, the
program in Figure 7c is certainly the most problematic: the bug counts are the same, the

plausibility of the bugs are similar, and the additional outside information is equivocal. The

moral of this program is that it can be exceedingly difficult to make decisions about plans -- and

bugs --by simply looking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the

programmer intended gets murky, and how additional information outside the buggy area needs

to be brought to bear. We see again that for the programs in Figure 7 the bug categorization

and bug frequencies change depending on what decision is made about the programmer's

intention.

Finally, the fact that the programs we have shown are notices' programs is really irrelevant to

the point in question: the problem is that the intention of the programmer effects the hug

categorization and the bug count. Quite reasonably, we would not expect a professiona

programmer to mistake an IF for a WHILE. The observation that we would not expect this

particular confusion would in fact aid us in inferring the intention - it would not, we believe,

simply make the problem go away. In fact, we might well see buggy code such as Figure 4,

Figure 7 from a professional programmer.
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a b

REAC(RAINFAL.) IEAO (RAINALL)
WHILE RAINFALL -o 999B DO WHILE RAINFALL 9o W"1 DO

BEGIN BGIN
IF RAINFALL < 0 TWEN IF RAINFALL C 0 THEN

WRITELNPCAD INPJT TRY AGAIN') BEGIN
TOTAL * TOTAL * RAINFALL IITELN('0 INPUT TI GAIN')
DAYS -OATS • I EAD(AINFALL).

(EAOAINALL) OW
END TOTAL - TOTAL * RAINFALL.

OAYS -OAYS * I
READ(RAINFALL)

END

READ(RAINFALL)
WILE RAINFALL "I DO9t 0

BEGIN
WHILE RAINFALL ' 0 00

vITEL('IAD IOW TRY AGAIN).
TOTAL - TOTAL - RAINFALL.
DAYS * DAYS • 1.
REAG(RAINFALL)

END

Figure 7: Clouding the Waters: Additional Buggy Programs

* 3. Methods for Specifying the Intention of a Program

In the above section, the basis for describing bugs was the difference between a program and

the programming plans that specified a correct program. There are other methods of specifying

the intention of a program:

* 1/0 Behavior

* Programming Plans

* Corrected Version of the Buggy Program

* Program Description Language (PDL)

In what follows we will examine each of these in turn, and explore their good points and the bad

points with respect to using a method as a basis for developing bug difference descriptions.

1/O BEHAVIOR

An I/0 specification for the problem in Figure 1 would be quite close to the problem statement

itself. The obvious problem with this method is its vagueness with respect to the code: many

different code fragments can misbehave in the same manner (e.g., there we many, many ways to

generating an infinite loop -- but the 1/O result is the same in all cases). One needs to be able

to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/0
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specifications.

PROGRAMMING PLANS

The major problem with this method is the need to guess what plan the programmer intended

to implement. However, once the decision is made, then describing the bug as a difference

between the plan and the code is relatively easy. One method of coping with the plan decision

problem is interviews with the original programmers; this technique has been used to "validate"

change report data in several software monitoring projects (e.g., 1121). Unfortunately, in a class
of 200 students writing code at different terminals, interviews with subjects is a bit more

difficult.

The major benefit derived from building a bug description using this method is an accurate

reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one

captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one

would like to know which bugs came from misunderstandings of the specifications document and

which bugs arose from coding errors, etc. For example, in the previous section if we assumed

that the programmer intended to implement a skip-guard plarn then we would say that there

were a number of coding level bugs (e.g., WHILE instead of IF, missing ELSE, spurious READ).

However, if we assume that the programmer intended to implement an embedded filter loop

pln then the source of the bug may be a problem of specification interprtation: the

programmer may not have thought that someone would ever input the sentinel value after

inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An

interview with the programmer would be particularly useful in this specific case.) Thus, bug

categorization and bug origin is directly influenced by the choice of underlying plan structure in

the buggy program.

CORRECTED VERSION OF THE BUGGY PROGRAM

The typical method of describing a bug is to compare the original buggy program with the

corrected version of that program (e.g., [12, 7, 11). While there is no guessing as to the intention

of the original programmer, we see 2 basic problems with this approach:

e 7Te choice of the particular corrected program used as the measure ie relatively
arbitrary. That is, there are few hard guidelines for making changes to code. Thus,
different program mersa could well take the same buggy program and correct it in
different ways. This would result in two different bug descriptions - an intuitively
unsatisfactory situation. Moreover, different bug descriptions could lead to different
conclusions as to the origins of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a Akip-guard plan, then the difference between
the buggy program and the corrected program would result in a bug description
containing 3 coding level bugs. On the other hand, if the program is corrected by
putting in aguard around the subsequent computation to protect against a sentinel
value, then the bug description would only contain I bug, a missing conditional
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(guard plan) - which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is no way to
guarentee this situation.

Interviewing the original programmer might shed some light on his intentions -- and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program - and
approaches a bug description based on the programmere orginal plani While we have
some methodological reservations about using interviews collected after the fact, 5 the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program - where the former information is
much more akin to the programming plans described above.

a 7sat is actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7c by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug or 2 bugs? It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the 'real* change. On the
other hand, however, in the next section we will show programs in which the 'real"
bug ie a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7c, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected

version of the program was suggested above: one is less confident of the origins of the bugs, and

thus is less confident about percentages of bugs with those origins. Depending on the particular

corrected solution and the particular choice of counting scheme, one could paint a picture of a

program that contained many more coding level errors, say, than specification-based errors. The

worst part of this situation is that we would not have a good way of knowing how right or wrong

this analysis was - since we don't know how the bug categories and counts would have turned

out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DESCRIPTION LANGUAGE (PDL)

PDL's come in all flavors; some are very close to the code, while others are more high level,

and closer to the plan level description. The former PDL would suffer from the same problems as

using a corrected version as the standard. The latter type of PDL would suffer from the problems

associated with using the programming plans as the standard.

1

'The problems with using interview data has received significant attention in psychology. For example, Eriesson
and Simon (41 have argued that one can reliably only we verbal information given by the subject as the en hset is
doinp ta 9"kh. They argue that sch a concurrent verbal report is effectively an on-line dump troi short-term
memory. In contrast, a report after the fact could be a story about what the subject thought be was thinking, and
that significant distortions can occur in this type of situation. While one might arguably feel that the Eriesson and
Simon pooition is a bit extreme, nonetheleu, it seems only prudent to exercise eare in interpreting interview data.
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4. An Extended Example
Let us now consider an actual example from the on-line protocol data. In Figure 8 we depict

the problem the students were trying to solve; in Figure 9 the program on the left is a buggy

program generated by a student in our study. If we take a "local view" of the bugs in this

program, we can generate a corrected version as shown in Figure 9 (right hand side). Notice that

if we do a difference description between the corrected and the buggy versions we can come up

with 8 changes:

9 The rainyday counter, COUNTI, will be always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNTI. Thus, [1]
added a begin-end block after (NUM < 0) test, and [21 added a decrement of the
rainyday counter.

9 COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT2) from the total valid days (COUNTI) in order
to get the number of rainy days: (3J changed addition of COUNTI and COUNT2 to
subtraction of COUNAT from COUNTI.

* The guard on the average calculation is incorrect. Thus, [41 changed guard on average
calculation to COUNTI.

* The divisor in the average calculation should be the valid day counter, COUNTI, not
the valid, but non-rainy day counter, COUNT2. Thus, [5] changed COUNT2 to
COUNTZ in the divisor of the average calculation.

a If there is no valid input the program should neither calculate the average, nor should
the program print it out -- as well as not printing out the maximum. Thus, [S] added
a begin-end block after division guard around average calculation and output
statements.

* The WRITELNs give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: [7] the valid
day counter needs to be COUNTI, while the [8] rainy day counter needs to COU?%T72.

Given the number of changes that need to be made to the counters (COUNTI and COUNT2), it

would appear that the student has some confusion over the roles of the two counters.

The Noah Problem: Noah needs to keep track of the rainfall is the New Haves are to determine
when to launch his ark. Write a program which he can use to do this. Your program should read
the rainfall for each day, stopping when Noah types "9999, which is not a data value, but a
sentinel indicating the end of input. If the user types in a negatp-e value the program should
reject it, since negative rainfall is not possible. Your program should print out the number of
valid days typed in. the number of rainy days, the average rainfall per day over the period, and
the maximum amount of rainfall that fell on any one day.

Figure 6: The Noah Problem: A First Looping Problem

However, consider now a different corrected version of this buggy program as depicted in

Figure 10. A difference description between the buggy version and the corrected version yields the

following set of bugs:

9 We can make COUNTI only keep track of the rainy days; this is consistent with code
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DUCCGY EXAMIPM cosauRanS VWSoN
KGPI EGIN

WAITILN ('PLEASE~ I IU MOM? OF RAINFALL') WITELM ('PLASI INPU 111111? OF RAINALL)11
R ADLIN 111 101111
READ(ALIP) OMAll(111A.U
COUN?1 - 0 MI '0
COUNT2 - 0 CNW2 s0
SIR *O so '0
"I~es - 0 NI~. 0.
WHIL[ (VIA < SENTINAL1) 00 NILE IRAS 0- SENIRAL) 00

EGIN RGIN
IF (FMie 0) IF (No ' 0)

ATi4N TNN

C2PSTI COUT'. CMXTI 'COAT I
I F (NIR H IGOWP IF (11110 WIWM
?WE%~ THEN

SIF (MR 0)

MAY.'* C"AT2 CDLN?? - COANT? - I
:F X" 01 If (AMM 0)

T1HE.4 TiNE
WRITELN ('.ILLEGAL !IPUT INPUT NEW VALUE*)11111t (do thee list )

QEAD% cmi uemalE* ; (owt ikeh~i.)
REN ul IIIWTELN ('ILLEGAL INPUT IPUT NEW VALUE')

CONT CONT2 - COU1TI READL11
IF ("N a 0) ftAS(tap)

TwfN Eo
*OTAL - SUP/COUNT7 mut =mm - audit (ehpd ue@ (hie 0)
WRITELN ('AVERAGE RAINFALL WAS TOTAL *IKCHE PER DAY-) IF Cttl 3 0 )w (6ut w 0 )
HRITELN CH"IOIIST RAINFALL WAS NIG~ * INCHES') THEN

WRITELN (,^"jT2 VALID DAYS WERE ENTERED) be- (*sod this thu. )
VPIIEL% ( COUNT? RAINY DAYS IN THIS PERIOD ITOTAL StP/inmtZ. to how~d &UP fine 0)

WRITELN ('AVERAGE RAINFALL WAS TOTR INCHES PER DAT1
VRITELN (HNIGHEST RAINFALL WAS HIGWTIM INPCHES*

VRITEL(Gatt VALID DAYS WERE ENTERED') (at e ahs how~ 0)
k*ITELNI(Imt. RAINY DAYS IN THIS PERIOD (dimpd thee howi

* (11 added a beg5aCed block after (111A 4 0) test. Rod 12 added a decremnt of the ratoyday counter

a 131 c.4angeo add tioR of COUNITi sod COUNT2 to subtraction of COUNT? from COATI

is 141 Clanged guard oH average CalcH latioH to COANTI

*e i changeo COUN'? to COUNTI a the divisor of the aversge CsIcelatlee

0 ill added a begHf-end block after ,HiStoo guard around swerage calculation sod output statemeets
is t(lJ Te va' day C-)vnter needs to be COUNIT) wklse 1 1 r ainy day counter needs to COUNT?

Figure 0: A Buggy Pogram and a Corrected Veision
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already in the program: the line that adds COUNT2 and COUNTI now makes sense
-- COUNT2 now keeps track of the valid days, and the divisor in the average
calculation suggests that COUNT2 should be the valid day counter. In order to make
COUNTI perform in this manner, we need to [1) add a begin-end pair around all
computation after NUM. > 0 test, up to the NUM " 0 test.

9 If there is no valid input the program should neither calculate the average, nor should
the program print it out - as well as not printing out the maximum. Thus, we need
to [2] add a begin-end block after division guard around average calculation and
output statements.

e The guard on the average calculation is incorrect. Thus, [33 changed guard on average
calculation to COUNTI.

Which description should we choose? And why! Notice that neither of the corrected versions

were that unreasonable. However, it would seem to us that one should choose the second bug

description over the first. The basis for that decision is the hypothesized plan structure

underlying the buggy version: it appears to us that the student was trying to structure the

actions in the main loop in terms of case. For example, the program explicitly tested for NUM
> 0, NUM - 0, and NUM < 0 and took the appropriate actions -- almost. In order to make
the case structure work, the code following the NUM > 0 up to the NUM - 0 test should be

grouped together. While one cannot put too much faith in the indentation of a novice's

program, 6 it appears that the indentation supports this analysis. Thu, what is missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM-

o test. On this analysis, the student does not have a misunderstanding surrounding the two

counters, but rather has a coding level misunderstanding about how to block code together.

Moreover, this same misunderstanding can explain the lack of a begin-end pair surrounding the

average calculation in the next two write statements. The reduced bug count in the second

description follows directly from this analysis: in effect there awe only 3 bugs in this program, 2

of which have the same underlying origin.

This example illustrates a point made earlier. the bug categorization and bug count follow.

from an understanding of the program that is provided by tke hypothesized plan structure of

the program. That is. to understand a buggy program, one must make inferences about what

plan structure the programmer intended to implement; the program only *makes sense" in terms

of these plan descriptions.

$We have observ~ed in the on-line protocols that the physical layout of a student's program suffers U the student
makes changes to his program in the procss of debugging it.
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BEGIN BGYZA P BEGIN N T =CI W DVZ m

WRKTELN ('PLEASE' KMPUIT AURT OF RAINFALL') WITEIM ('PLEASEI IIDPJT MOT OF MVRAKWML*)
READLN PEAK",
RAALP1READ(MM ALIN)
COi4TI 0 cUT1 a 0
COUAIT2 0 COIWdI - 0,

WIKLE (WIN a, SENTKNAL) DO WHILE (010443 SONIKAL) DO

IF (AA 0) IF (m 2 0
TWEN TNEe

c~jNTI - cowl I RX K mm *i. WAR
IF (FILM ' IGURM) CA6TI =CmOTI * I

THEN KF (NURHM WM
HKONP - WIN TUEN

.r (11101 - 0) WIr~A * M
THENk ASI. (ad" #A" be. e)
CMAT2) -COWM2. -I If (KIN xO)

KF (41.1M 0) THENl
TWE N CMLRT2 w COLIET2*I

WRITELN ('ILLEGAL XNFLJT INPUT NEW WALLS') KF (111011 c 0)

AMINOM) ITELIN K TILMAL INPUT KmpJt NEW WALL)

COJET? * CMT2 * Coil~l REAIAII)
KF (AIl 0) END
TWE'E COL2 - C~itW2 - CG.*T)
'OTAL S 9J/CCIA3T2 IF (M W ). 0) fO mkp tso .. )

WRITELAI (AVERAGE RAINFALL WAS TOTAL -IES PEN DAY-) THEM

WRI11TELNS (HK4GMEST RINFtALL VAS PIWRALI I 1NESI 64.. aud tame $.)
WRI'EI.N (CKIJET2 VALKD DAYS WERE ENTERED-) ?OTAL - SUVCOMT2
IKITEJE (COUNTI RAINY DAYS KN TmKS PERIOD PWITELMN ( AVERAGE RAINFALL. WAS TOSAL. INCHES PER DAY2

EPIC VNITELIN (W101OEST RAKNFALL VAS *I~MAM INCHES
0" (Is ae kne )
gITELOO (OM2 VALKD DAYS WKR ENTERED)
W~AKI (OAffI NAdKM DAYS KM THIS PERIOD

0 111 add a beg."-end pair afrrovd all Compgtatioa after Mis b 0 oSt vp to Lb.SM 0 tent

* 121 add a beg-ft-esd bloCk after diviSie. 5gard &roved average CalColation sod ovtpvL StatementS

* jai Cheaned gosard oH average caIcuIALIOR to COW?)J

Figure 10: A Bugggy Progam an an Alternative Cormeted Version
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S. Concluding Remarks
We have argued that a bug description is a difference description between the realization and

the intention specification. We have presented a number of techniques for specifying the intention

and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we

have argued that the understanding provided by a plan analysis of the buggy program stands a

better chance, as compared to the other techniques, of providing a more accurate categorization

and count of the bugs - and thus a more accurate reflection of the origins of the bugs.

I
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